第五世代のアクチュアリー

~スタティスティカル・アクチュアリーという新たなキャリア~

2017年5月20日

慶應義塾大学

白石博

自己紹介(白石博)

▶ 所属

✓ 慶應義塾大学 理工学部 数理科学科 准教授

▶職歴

- ✓ 1998-2000 GEキャピタル・エジソン生命保険株式会社
- ✓ 2000-2005 プルデンシャル生命保険株式会社
- ✓ 2005-2007 ハノーバー・リー・サービセス株式会社
- ✓ 2007-2009 早稲田大学基幹理工学部応用数理学科
- ✓ 2009-2013 東京慈恵会医科大学
- ✓ 2014- 現職

▶ 所属学会

✓ 日本数学会、日本統計学会、日本アクチュアリー会(正会員)

▶ 学歴

- ✓ 1994-1998 早稲田大学理工学部数学科
- ✓ 2003-2004 早稲田大学理工学研究科 修士課程
- ✓ 2005-2007 早稲田大学理工学研究科 博士課程

OLIS-慶應義塾大学保険フォーラム2016

テーマ:アクチュアリーとデータ解析〔1〕 新たな時代の予感

開催日時 : 2017年3月11日 (土) 12:50~17:30

場所: 慶応義塾大学 日吉キャンパス 独立館 D203

選師 各共業士組 (4) 東京財団 (5) 数大学大学時		テーマ
亀井 善太郎 氏	東京財団・立教大学大学院	日本における政策決定に資するデータ整備の課題と今後の可能性
日笠 克巳 氏	元国際アクチュアリー会会長	IAAの活動とIAA教育シラバスの改訂について
藤澤 陽介 氏 寺島 尚秀 氏 坂本 康昭 氏 白石 博 氏	RGA再保険会社 アクサ損害保険株式会社 アクサ損害保険株式会社 慶應義塾大学	プレゼンテーション+パネル 〈第五世代のアクチュアリー〜スタティスティカル・アクチュアリーと いう新たなキャリア〜〉

藤澤陽介氏、寺島尚秀氏、坂本康昭氏の紹介

藤澤 陽介 氏

- ▶ RGA再保険会社(ディレクター)
 - ✓ 信託銀行、保険会社を経て現職
 - ✓ University of Waterloo留学
 - ✓ ASTIN関連研究会、産学共同委 員会
 - ✓ 九州大学理学部数学科卒業

寺島 尚秀 氏

- ▶ アクサ損害保険株式会社(データイノベーション部担当部長)
 - ✓ コンサルティングファーム、保険会社を経て現職
 - ✓ 東京工業大学卒業、大学院修了

坂本 康昭 氏

- ▶ アクサ損害保険株式会社(Chief Scientist, Open Al Lab)
 - ✓ Ex-Professor of Intelligence and Analytics in USA
 - Founding member of big data initiatives
 - ✓ Ph.D. from the University of Texas at Austin

(出典) 慶應保険フォーラム2016の各発表資料より抜粋

第5世代のアクチュアリーって? Actuaries of the Fifth Kind?

Hans Bühlmann 1987 Actuaries of the First Kind

Actuaries of the Second Kind

Actuaries of the Third Kind 17th century: Life insurance, Deterministic methods

- Early 20th century: General insurance, Probabilistic methods
- 1980s: Assets/derivatives,
 Contingencies Stochastic processes

Paul Embrechts 2005

Actuaries of the Fourth Kind

Fifth Kind

Early 21st century: ERM

Actuaries of the S

Second decade of 21st century: Big Data

▶ 第1世代:生保(年金)数理

▶ 第2世代:確率論的損保領域

▶ 第3世代:資産運用・ALM

▶ 第4世代: Enterprise Risk Management

▶ 第5世代:ビックデータ解析

Working Party

Big Data

(出典) 平成28年9月14日日本アクチュアリー会例会「Risk Management: Then, Now and Tomorrow」(Paul Embrechts 氏) の講演資料より抜粋

第5世代のアクチュアリーになるためには?

Data Science with Actuarial Applications:

"This course provides a comprehensive treatment of various techniques from statistics, predictive analytics and machine learning that can be used to analyze data sets relevant for actuarial applications. Specific topics covered include: modelling principles and practice, analysis and estimation of survival and multiple-state models, insurance pricing using generalized linear models, classification and tree-based methods, and Monte Carlo simulation of time series."

- ✔ 保険データを分析するための統計、予測モデル、機械学習
- ✓ モデリングの原則と実務、GLM、分類、決定木、時系列解析 等

Course Proposal of Master of Mathematics in Actuarial Science, University of Waterloo

第5世代のアクチュアリーになるためには?

Data Science with Actuarial Applications:

- ▶ Module 1: モデリング
 - ✓ 回帰モデル,統計的機械学習, モデルのバリデーション
- ► Module 2: Survival and multiple state models
 - ✓ Kaplan Meier, Nelson Aalen
- ▶ Module 3: 一般化線形モデル(GLM)を用いたプライシング
 - ✓ GLMの復習と損害保険のプライシング

- ► Module 4: Classification methods
 - ✓ ロジスティック回帰,Cox比例ハザードモデル,判別分析,K近傍法
- ▶ Module 5: Tree-based methods
 - ✓ Regression trees, Classification trees, ランダムフォレスト
- ▶ Module 6: 時系列解析のモンテカルロシミュレーション
 - ✓ ARCH/GARCHモデル, Variance reduction methods, ブートストラップ

An Introduction to Statistical

Learning
with Applications in R

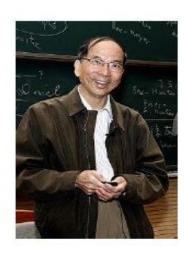
Daniela Witten

Springer

Course Proposal of Master of Mathematics in Actuarial Science, University of Waterloo

第5世代のアクチュアリーになるためには?

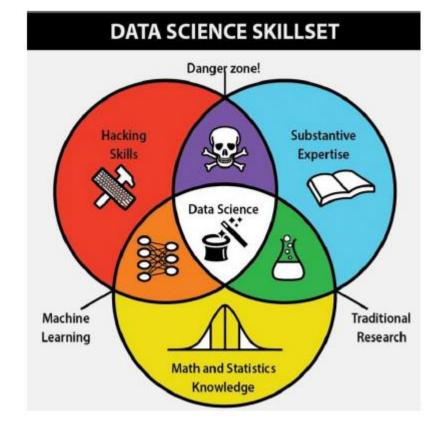
Data Science with Actuarial Applications:


- ▶ プロジェクト:
 - ✓ 変額年金を販売する保険会社のリスク管理部門を想定
 - ✓ 上司が変額年金のリスク管理に用いる株価モデルの変更を検討
 - ✓ 現在の株価モデルは、独立した対数正規モデルILN (µ, σ)
 - ✓ S&P500とTSXインデックスの月次収益率が利用可能
 - ✓ 上司に提出するレポートを用意せよ
 - ILN、GARCH、RSLN(レジームスイッチ対数正規)モデルと、それらのbivariateモデルを構築し、最も適切なモデルとそのパラメータを提案せよ

Course Proposal of Master of Mathematics in Actuarial Science, University of Waterloo

データサイエンス?データサイエンティスト?

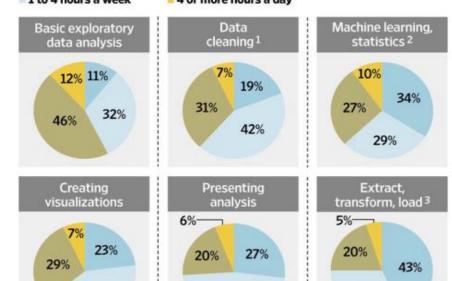
1997: Classic version


- C.-F. Jeff Wu, then at University of Michigan
- Statistics = data science
- Statisticians = data scientists

2008: Modern version

- D. J. Patil, then at LinkedIn
- Jeff Hammerbacher, then at Facebook
- The leads of Data and Analytics used the term "data scientist" to define their jobs

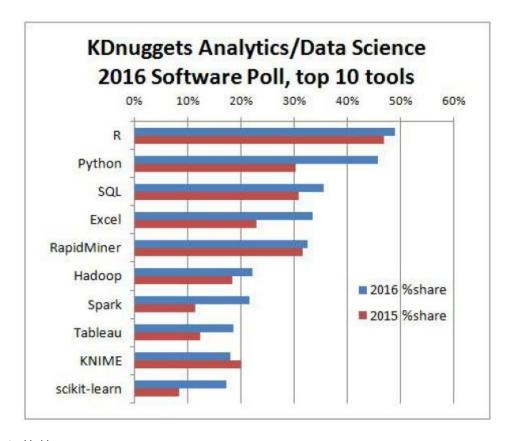
データサイエンティストは何をする?


32%

Where Does the Time Go?

The amount of time spent on various tasks by surveyed nonmanagers in data-science positions

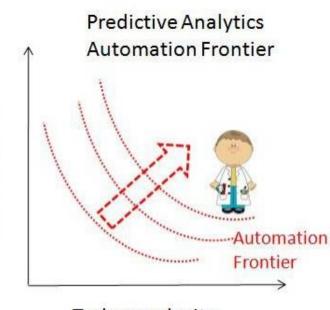
Less than 1 hour a week 1 to 3 hours a day
1 to 4 hours a week 4 or more hours a day


41%

Correcting or removing faulty data ² Creating computer models
3 Also known as ETL — moving information to a data warehouse
Source: O'Reilly Media Inc. online survey of more than 600 datascience
professionals, conducted from November 2014 to July 2015 THE WALL STREET JOURNAL.

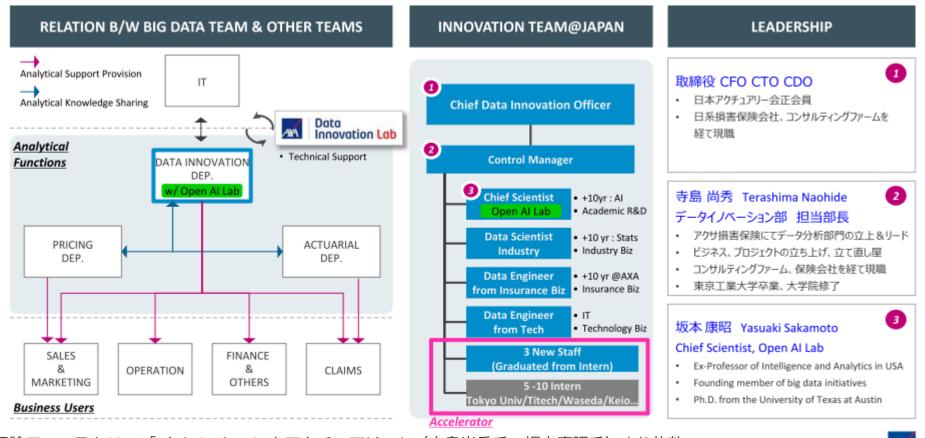
47%

Data Science Tools



データサイエンスの将来は?

Data scientists automated and unemployed by 2025? By KDnuggets


Degree of Automation

- Automatic Statistician
- Data Science machine
- DataRobot
- IBW Watson Analytics
- Google Analytics

Task complexity

データサイエンスを活用した企業の取り組み

(出典) 慶應保険フォーラム2016「イノベーションとアクチュアリー」(寺島尚秀氏、坂本康昭氏)より抜粋

データサイエンスを活用した企業の取り組み

逸材と産学連携のカタチ「Innovation University」

新しい仕掛け "Innovation University" と実績

- デジタル&テクノロジー業界(Google、Amazon、IBMなど)やFin-Techをトリガーとした金融機関のラボ設立にともなって、保険&アクチュアリー業界は相対的に有能なデータサイエンティストやイノベーターを集めることが難しくなっている。
- そこで、イノベーションを起こす逸材の発掘および機会提供を目的に"Innovation University Program"を企画
- データ分析&モデル構築、Apps開発の講義とチャンピオンシップを通じた実習、プレゼンテーションをパッケージ
 - ① チャンピオンシップ開催(参加大学:東大、東工大、早稲田、慶応、お茶の水など、今後の予定:NYの大学)
 - ② フレックスインターンプログラム(学業とのバランスを考慮し、実施期間・頻度・就業内容をフレキシブルに設定)
 - ③ 単位取得(大学公認プログラム化)
 - ④ 論文発表(共同研究)
- インターンを通して、アクサのデータイノベーション部門で働く魅力、自身の活躍、勤務条件のイメージングが明確化

- 逸材の惹きつけ:東大、東工大、早稲田の 主席&代表クラスの大学院生
- 革新的オープンソース テクノロジーを活用した作品

(出典)慶應保険フォーラム2016「イノベーションとアクチュアリー」(寺島尚秀氏、坂本康昭氏)より抜粋

データサイエンスを活用した企業の取り組み

Model & Result (Trend of calls: Actual vs. Model)

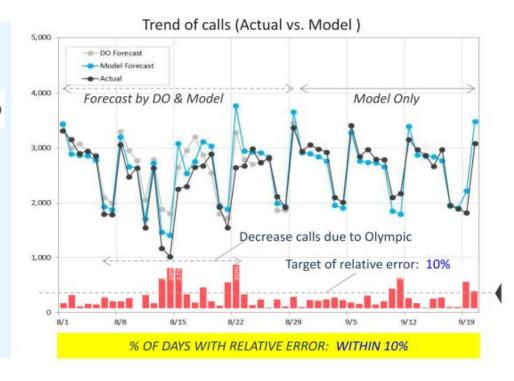
ARIMA(p,d,q) model

* AutoRegressive Integrated Moving Average model

$$y'(n) = \sum_{k=1}^{p} \alpha(k)y'(n-k) + \sum_{k=0}^{q} \beta(k)\varepsilon(n-k)$$

Series: y(0), y(1), ..., y(n)

Difference series: y'(1), y'(2), ..., y'(n)


$$y'(n) = y(n) - y(n-1)$$

Calculate difference series d times.

 $\varepsilon(n-k)$: white noises.

 $\alpha(k)$: the parameters of the autoregressive part.

 $\beta(k)$: the parameters of the moving average part.

産・官・学連携の必要性

ETH (チューリッヒ工科大学) の取り組み:

- ▶ **Risk Lab** (1994-):学科(D-MATH) 内の研究組織
 - ▶ 統計的モデリングや定量的リスク管理を研究分野とし、産業内での問題を研究対象
 - ▶ 産・官・学との知識の共有を重視
- ▶ Risk Center (2005-): ETH内の関連する8学科の教員による研究組織
 - ▶ ETHとの組織単位での共同研究(AXA, Credit Suisse, Swiss Re, ZURICH など)
- ▶ Risk Day (1998-): ETHで毎年開催されるカンファレンス
 - ▶ 産・官・学(含む学生)の研究者での問題提起(共有)の場
 - ▶ 当初の参加者は40人程度だったが、2016年9月16日の会議では約400人の参加者

第5世代のアクチュアリーの広がりのために 16 ~日本の産・官・学(特に学)がすべきこと~

▶ 教育の充実

- ▶ 従来の数理統計のような理論の教育だけでなく、データを活用した解析
- > 実践的な問題解決の経験(Case Study)

▶ 研究連携の充実

- ▶ 日本版Risk Day
- ▶ 産・官・学共同研究

人材の相互派遣

- > 実務経験者の研究者・教育者としての招聘
- ▶ インターンシップ制度
- ▶ 社会人ドクターの受け入れ

第5世代のアクチュアリーと認定されるためには?

- ► CERA(Chartered Enterprise Risk Actuary)のような試験の 創設?
- ▶ そもそも認定されるものではない?
- ▶ 業務で統計を扱っていれば第5世代?
- ▶ 扱うデータがBigであれば第5世代?
- ▶ Machine Learningに関する知識を知っていれば第5世代?
- ▶ プログラミングに精通していれば第5世代?

ご清聴ありがとうございました。